(English Version)

Subject: Higher Mathematics 2nd Paper

Time: 3 Hours

Full Marks — 75

[The figure in the right margin indicate full marks]

Group-A: Algebra

- Answer any two of the followings questions:
 - For all $a, b \in \mathbb{R}$, show that $|a + b| \le |a| + |b|$
 - Solve and show the solution set on real line of

$$\frac{1}{|3x-5|} > 2$$

- If $\sqrt[3]{a+ib} = x + iy$, then show that $4(x^2 y^2) = \frac{a}{x} + \frac{b}{y}$.
- - Answer any two of the following questions: $5 \times 2 = 10$ a. If one of the roots of $ax^2 + bx + c = 0$ is the square of the other, then prove that $c(a - b)^3 = a(c - b)^3$
 - Show that, in the expression of $(1 2x)^{\frac{1}{2}}$ the coefficient of (r + 1)th term is $\frac{(2r)!}{(r!)^2 \cdot 2^r}$
 - Show that, the middle term in the expansion of $\left(x \frac{1}{x}\right)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n 1)}{n!} (-2)^n$

Group-B: Geometry

- Answer any two of the following questions: $5 \times 2 = 10$
 - Find the equation of the parabola whose vertex is the point (4, -3), directrix parallel to the x-axis and which passes through the point (-4, -7)
 - b. Find the length of the latus rectum, eccentricity and the co-ordinates of the two foci of the ellipse $2x^2 + 3y^2 - 1 = 0$
 - Find the equation of the hyperbola whose directrix is 2x + y = 1, coordinates of the focus (1, 1) and the eccentricity is \sqrt{3}.

Group-C: Trigonometry

- Answer any two of the following questions:
 - Prove that $\sin^{-1}(\sqrt{2}\sin\theta) + \sin^{-1}(\sqrt{\cos 2\theta}) = \frac{\pi}{2}$ a.
 - b. Find the value of $\sin \theta - 2 = \cos 2\theta$, when, $-2\pi < \theta < 2\pi$.
 - Solve the equation $\cos\theta \cos 7\theta = \sin 4\theta$

Gropu-D: Mechanics

- Answer any one of the following questions:
- (i) Find the resultant and the point of action of the two unequal unlike parallel forces acting on a rigid body. (ii) A uniform plank of length 2a and weight W is suspended horizontally on two vertical props at a distance b apart. The greatest weights that can be placed at the two ends in succession without

upsetting the plank are
$$W_1$$
 and W_2 respectively.
Show that $\frac{W_1}{W+W_1} + \frac{W_2}{W+W_2} = \frac{b}{a}$

- b. (i) State the varignon's theorem and prove it when the forces are intersects at a point on the rigid body.
 - (ii) The resultant of two like parallel forces P and Q passes through a point O, when P is increased by R and Q by S, the resultant still passes through O and

- also when Q, R replace by R and Q respectively. Prove that $S = R - \frac{(Q - R)^2}{P - Q}$.
- Answer any one of the following questions: $5 \times 2 = 10$
 - (i) Under usual notation, prove that $v^2 = u^2 + 2fs$. (ii) A particle is projected at an angle 45° from a point at a distance x from the foot of the vertical wall. It just clears the wall and fall on the ground at a distance y on the other side of the wall. Show that
 - the height of the wall is $\frac{xy}{x+y}$.
 - (i) Prove that the equation of the path of a projectile in vacuo is $y = x \tan \alpha \left(1 - \frac{x}{R}\right)$, where α is the angle of projection and R is the horizontal range.
 - (ii) A stone falling from the top of a vertical tower has descended x meters when another is let fall from a point y meters below the top. If they fall from rest and reach the ground together, show that the height of the tower is $\frac{(x+y)^2}{4x}$

Group-E: Linear Programming

Solve the linear Programming with help of graph and maximize Z = 3x + 4y.

Under the conditions: $x + y \le 450$, $2x + y \le 600$, $x \ge 0, y \ge 0$.

- Or, One business centre produces two goods A and B and profits Tk. 3 and Tk. 4 per unit of goods respectively. Each of the goods is prepared by two machines M1 and M2. Machine M1 and M2 take time to prepare goods A in 1 and 2 minutes respectively. Goods B is prepared by
- machine M1 and M2 in 1 and 1 minute respectively. M1 and M_2 machines are to be used $7\frac{1}{2}$ hours and 10 hours in
- every working day respectively. In order to get highest profit how much of the goods A and B should be produced? Prepare the linear programming.

Group-F: Statistics

- Answer any two of the following questions: Determine the Mean deviation and Standard deviation from the following frequency distribution table below: 5 60-62 63-65 66-68 69-71 72-74
 - 42 27 State and prove that the Addition rule of probability for the event mutually not exclusive.
 - c. Out of 200 candidates in an examination in Mathematics and Statistics, 20 fail in Statistics, 40 fail in Mathematics and 10 fail in both the subjects. If a candidate is selected at random then what will be the probability of his passing in Statistics and failed in Mathematics.
- Solve: $\frac{3}{2} < x < \frac{11}{6}$ But $x \neq \frac{5}{3}$ Solution Set: $S = \left\{ x \in \mathbb{R} : \frac{3}{2} < x < \frac{11}{6} \text{ and } x \neq \frac{5}{3} \right\}$ Real line:
- (a) $x^2 8x + 16y + 64 = 0$
 - (b) $\frac{2\sqrt{2}}{3}$, $e = \frac{1}{\sqrt{3}}$, $\left(\pm \frac{1}{\sqrt{6}}, 0\right)$ (c) $7x^2 2y^2 + 12xy 2x + 4y 7 = 0$

- (b) $\theta = -\frac{3\pi}{2}, \frac{\pi}{2}$
 - (c) $\theta = \frac{n\pi}{4}, \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$, when $n \in \mathbb{Z}$.
- (a) Z_{max} = 1800 Or, A = 150 and B = 300
 - (i) 2.265 inchi and 2.92 inchi