Full Marks — 75

(English Version)

Subject: Higher Mathematics 2nd Paper

Time: 3 Hours

The figure in the right margin indicate full marks

- Answer any two of the following questions: $5 \times 2 = 10$
 - a. Prove that, √3 is an irrational number.
 - b. If $a^2 + b^2 = 1$, show that a real value of x will satisfy
 - the equation $\frac{1-ix}{1+ix}$ = a-ib, when a and b are real
 - c. If a and b are real numbers, prove that $|a b| \ge |a| |b|$
- Define linear programming. Write drawn the steps for the formation of the linear problems.
- Solve the following linear programming with the help of graph and maximize z = 3x + 4y, constrains $x + y \le 7$, 2x + $5y \le 20, x, y \ge 0.$
- Answer any two of the following questions:
 - a. If one of the root of the equation $27x^2 + 6x (p + 2)$ = 0 is the square of the other, find the value of p.
 - b. If the roots of the equation $x^2 bx + c = 0$ and $x^2 cx +$ b = 0 differ only by a constant then prove that b + c +
 - c. If the coefficients of x7 and x8 are equal in the expansion of $\left(3+\frac{x}{2}\right)^n$, where $n \in \mathbb{N}$, find the value of n.
- Answer any two of the following questions:
 - a. The focal distance of any point on the parabola is $y^2 =$ 8x; find the coordinates of the point.
 - Find the equation of the directri x of the parabola whose focus is (3, 4) and whose vertex is (0, 0)
 - c. For what value of p does the ellipse $\frac{x^2}{p} + \frac{y^2}{5^2} = 1$ pass through the point (6, 4)? Find the eccentricity and the coordinates of the foci of the ellipse.
- Answer any two of the following questions: $5 \times 2 = 10$ 5.
 - a. Prove that, $\sin^{-1}(\sqrt{2}\sin\theta) + \sin^{-1}(\sqrt{\cos 2\theta}) = \frac{\pi}{2}$
 - Prove that, $sincot^{-1} tan cos^{-1} x = x$
 - Solve the equation, $\cot \theta + \tan \theta = 2\sec \theta$, $-2\pi < \theta < 2\pi$
- Answer any two of the following questions:
 - Under usual notations deduce $v^2 = u^2 + 2fs$.

- b. If v₁, v₂, v₃ be the average velocities in three successive intervals of times t, t2, t3 respectively of the point moving on the straight line with uniform acceleration, Show that $v_2 - v_3 = t_2 + t_3$
- Or, a. Show that the path of a projectile in vacuou in a parabola.
 - b. If t be the time taken by a projectile to reach at the point P, it also taken more t' seconds to reach the plane projection. Show that the height of the point P is 1 gtt'.
- Answer any two of the following questions:
 - a. The algebraic sum of the resolved parts of two forces acting at appoint in any direction is equal to the resolved parts of their resultant in the same direction.
 - The resultant of two concurrent forces p and Q(P > Q)trisects the angle between them. Show that, the angle between them is $3\cos^{-1}\left(\frac{P}{2O}\right)$ and the resultant equal to
- Or, a. Find magnitude and point of action of the resultant of two like parallel forces acting on right body.
 - b. P and O are two like parallel forces. If p is moved parallel to itself through a distance. Show that the resultant of p and Q will move through distance
- Answer any two of the following questions:
 - State and prove the law of addition rule for two not mutually exclusive events.
 - b. A box contains 6 white, 7 red and 9 black balls of different shape. A ball is drawn at random. What is the probability of the ball to be red or white?
 - Find the standard deviation from the following frequency distribution table:

values xi	10	13	25	30	37	42	45
Frequencies fi	3	.7	8	15	10	5	2

- OR, 23.
- (a) 6, -1
 - (c) 55
 - (a) $(6, \pm 4\sqrt{3})$
 - (b) 3x + 4y + 25 = 0
 - (c) $100, \frac{\sqrt{3}}{2}, (\pm 5\sqrt{3}, 0)$

- 5. (c) $-\frac{11\pi}{6}$, $-\frac{7\pi}{6}$, $\frac{\pi}{6}$, $\frac{5\pi}{6}$
- 8. (b) $\frac{13}{22}$
 - (c) 10 (approx)