১৯। শব্দের দ্রুতি

(Speed Of Sound)

শব্দের দ্রুতি সম্পর্কিত নিউটনের সূত্র (Newton's Formula for Speed of Sound):

মো: শৃহ জামাল

সূত্রঃ কোন মাধ্যমে শব্দের দ্রুতি মাধ্যমের স্থিতিস্থাপক গুনাঙ্কের বর্গমূলের সমানুপাতিক এবং মাধ্যমের ঘনত্বের বর্গমূলের ব্যস্তানুপাতিক। নিউটন গাণিতিক ভাবে এই সূত্রকে নিন্মোক্ত সমীকরণের সাহায্যে প্রকাশ করেন ঃ

$$v = \sqrt{\frac{E}{\rho}}$$
... ... (1) এখানে, $E =$ মাধ্যমের স্থিতিস্থাপক গুণান্ধ, $\rho =$ মাধ্যমের ঘনতৃ, $v =$ শব্দের বেগ

গ্যাসীয় বা বায়ু মাধ্যমে সূত্রের রূপঃ গ্যাসীয় পদার্থের ক্ষেত্রে স্থিতি স্থাপক গুণাঙ্ক E, আয়তনের স্থিতিস্থাপক গুণাঙ্ক B নির্দেশ করে। সুতরাং গ্যাসীয় মাধ্যমে শব্দের দ্রুতি সম্পর্কিত নিউটনের সূত্রের রূপ হবে, $v=\sqrt{\frac{B}{\rho}}$ এখানে, B= মাধ্যমের আয়তনের স্থিতিস্থাপক

গুণাঙ্ক, ρ = গ্যানের ঘনতু, v = শব্দের বেগ

<u>B = p প্রতিপাদন ঃ</u> ধরি, কোন নির্দিষ্ট ভরের গ্যাসের চাপ p এবং আয়তন ∨ । তরঙ্গ ক্রিয়ায় এই চাপ ও আয়তনের পরিবর্তন ঘটে। নিউটনের ধারনা ছিল এই চাপ ও আয়তনের পরিবর্তন সমোঞ্চ প্রক্রিয়া। সুতরাং বয়েলের সূত্রানুযায়ী,

pV **=क्ष**•वक

এই সমীকরণকে V এর সাপেক্ষে ব্যবকলন করলে, অর্থাৎ

$$\frac{d}{dV}(pV) = 0$$

$$\Rightarrow p \frac{dV}{dV} + V \frac{dp}{dV} = 0$$

$$\Rightarrow p + V \frac{dp}{dV} = 0$$

$$\therefore p = -\frac{dp}{dV} = \frac{\text{আয়তন পীড়ন}}{\text{আয়তন বিকৃ তি}} = \text{আয়তনের স্থিতিস্থাপক গুণান্ধ} = B$$

 $\therefore p = B$ এখানে ঋনাত্মক চিহ্ন চাপ বৃদ্ধিপেলে আয়তন<u>হা</u>স বা চাপ<u>হা</u>স পেলে আয়তন বৃদ্ধি বোঝায়। সূত্র মতে বায়ুতে শব্দের বেগ

$$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{p}{\rho}}$$

$$v = \sqrt{\frac{p}{\rho}} = \sqrt{\frac{1.013 \times 10^5}{1.293}} = 280 \text{ ms}^{-1} \quad \text{এখানে, } p = \text{বায়ুর চাপ} = 1.013 \times 10^5 \text{ Nm}^{-2}, \, \rho = \text{বায়ুর ঘনত = 1.293 kgm}^{-3}$$
 কিন্তু

প্রমাণ তাপমাত্রা ও চাপে বায়ুতে শব্দের বেগ 332ms⁻¹। এখান থেকে ধারনা করা হয় যে, নিউটনের সূত্রের কোথাও ভুল আছে।

ল্যাপলাস কড়ক নিউটনের সূত্রের সংশোধনী (Correction of Newton's law by Laplace):

নিউটনের সূত্র মতে বায়ুতে শব্দের দ্রুতি 280 ms⁻¹। এই মান পরীক্ষা লব্ধ মানের চেয়ে অনেক কম হওয়ায় স্পষ্ট বুঝা যায় যে, তার সূত্র প্রয়োগের সময় নিউটন যে ধারনা করে ছিলেন তাতে কিছু ভুল ছিল। 1817 সালে বিজ্ঞানী ল্যাপলাস নিউটনের অনুমানের ভুল বের করতে সমর্থ হন এবং গ্যাসীয় মাধ্যমে শব্দের দ্রুতি সম্পর্কিত সূত্রের সংশোধন করেন। ল্যাপলাসের মতে গ্যাসীয় মাধ্যমে শব্দ সঞ্চালনের সময় নিউটন মাধ্যমের তাপমাত্রার কোন তাপমাত্রার কোন পরিবর্তন হয়না বলে যে অনুমান করে ছিলেন তা ঠিক ছিলনা। আর তাই গ্যাসের যে আয়তন গুণাঙ্ক B, চাপ p-এর সমান বের করে ছিলেন তা ঠিক হয়নি। ল্যাপলাস বলেন চাপ বৃদ্ধির ফলে বায়ুস্তরের সঙ্কোচন হওয়ার ফলে যে তাপের উদ্ভব হয়, সেই তাপ বিকিরিত হওয়ার আগেই পরবর্তী প্রসারণ শুরু হয়। ফলে তাপমাত্রা কোন মতেই স্থির থাকতে পারে না। সুতরাং এই পরিবর্তন সমোক্ষ পরিবর্তন নয় বলে এখানে বয়েলের সূত্র pV = ধ্রুবক প্রযোজ্য হতে পারে না। এই পরিবর্তন রুদ্ধ তাপীয় পরীবর্তন । এই প্রক্রিয়ায় চাপ ও আয়তনের সম্পর্ক p√ = ধ্রুবক। এখানে γ ছির চাপে ও ছির আয়তনে গ্যাসের আপেক্ষিক তাপের অনুপাত। দ্বি পরমানুক গ্যাসের জন্য γ এর মান 1.41।

pV'=ধ্রুবক, এই সমীকরণকে V এর সাপেক্ষে ব্যবকলন করে পাই,

$$\frac{d}{dV}(pV^{\gamma}) = 0$$

$$\Rightarrow p\gamma V^{\gamma-1} \frac{dV}{dV} + V^{\gamma} \frac{dp}{dV} = 0$$

$$\Rightarrow p\gamma V^{\gamma-1} = -V^{\gamma} \frac{dp}{dV}$$

$$\Rightarrow p\gamma = -\frac{V^{\gamma}}{V^{\gamma-1}} \frac{dp}{dV}$$

$$\Rightarrow \gamma p = -V^{\gamma-\gamma+1} \frac{dp}{dV}$$

$$\Rightarrow \gamma p = -V rac{dp}{dV}$$
 $\Rightarrow \gamma p = -rac{dp}{rac{dV}{V}} = rac{ ext{single of parts}}{ ext{single of parts}} = ext{single of parts}$ $\Rightarrow \gamma p = -V rac{dp}{dV}$ $\Rightarrow \gamma p = -rac{dp}{rac{dV}{V}} = rac{ ext{single of parts}}{ ext{single of parts}} = ext{single of parts}$ $\Rightarrow \gamma p = -V rac{dp}{dV}$ $\Rightarrow \gamma p = -V \Rightarrow \gamma p =$

বৃদ্ধিপেলে আয়তন হ্রাস বা চাপ হ্রাস পেলে আয়তন বৃদ্ধি বোঝায়। সূত্র মতে বায়ুতে শব্দের বেগ $\mathbf{v}=\sqrt{\frac{\mathbf{B}}{\rho}}=\sqrt{\frac{\gamma p}{\rho}}$

$$v = \sqrt{\frac{\gamma p}{\rho}} = \sqrt{\frac{1.41 \times 1.013 \times 10^5}{1.293}} = 332.4 \, \text{ms}^{-1}$$
 এখানে, $p =$ বায়ুর চাপ= $1.013 \times 10^5 \, \text{Nm}^{-2}$, $\rho =$ বায়ুর ঘনত = 1.293

kgm⁻³ । সূতরাং ল্যাপলাসের সংশোধনের ফলে সূত্রের সাহায্যে তাত্ত্বিক ভাবে শব্দের দ্রুতির যে মান পাওয়া যায় তা পরীক্ষা লব্ধ মানের সাথে মিলে যায়। এই ভাবে ল্যাপলাস নিউটনের সূত্রের সংশোধন করেন।

শব্দের দ্রুতির উপর চাপের প্রভাব (Effect of Pressure on speed of Sound):

m ভরের কোন গ্যাসের উপর চাপ যদি p_1 থেকে p_2 তে আয়তন যথাক্রমে V_1 থেকে V_2 -তে পরিবর্তিত হয়। এই পরিবর্তনের সময় যদি তাপমাত্রা স্থির থাকে, তাহলে বয়েলের স্ত্রান্যায়ী,

াপ ভাগমাঞ্জা । ছব খাকে, ভাইলে ব্যৱসের সূত্রাপুরারা,
$$p_1 V_{1} = p_2 V_2$$

$$\Rightarrow p_1 \frac{m}{\rho_1} = p_2 \frac{m}{\rho_2}$$

$$\left[\because V_1 = \frac{m}{\rho_1} \quad \text{s} \quad V_2 = \frac{m}{\rho_2} \right]$$

$$\Rightarrow \frac{p_1}{\rho_1} = \frac{p_2}{\rho_2} = \text{ধূবক}$$

এখন শব্দের দ্রুন্তি, $v=\sqrt{\frac{1.41p}{\rho}}$ সূত্রে যেহেতু $\frac{p}{\rho}$ অনুপাতটি সর্বদা স্থির থাকে, সূতরাং স্থির তাপমাত্রায় কোন গ্যাসের চাপ পরিবর্তিত হলে তাতে শব্দের দ্রুন্তির কোন পরিবর্তন হয় না। অর্থাৎ স্থির তাপমাত্রায় শব্দের দ্রুন্তির উপর চাপের কান প্রভাব নেই। শব্দের দ্রুন্তির উপর তাপমাত্রার প্রভাব (Effect of Temperature on speed of Sound):

গ্যাসের তাপমাত্রার পরিবর্তন হলে এর ঘনত্বের ও পরিবর্তন হয়। সুতরাং শব্দের দ্রুতির ও পরিবর্তন হয়। ধরি, p_1 চাপে, T_1 কেলভিন তাপমাত্রায় কোন গ্যাসের ঘনত্ব p_1 এবং উক্ত গ্যাসে শব্দের দ্রুতি v_1 । এখন p_2 চাপে, T_2 কেলভিন তাপমাত্রায় যদি ঐ গ্যাসের ঘনত্ব p_2 হয় এবং তখন গ্যাসে শব্দের দ্রুতি v_2 হলে,

এখন গ্যাসের প্রসারণ থেকে আমরা জানি,

$$\frac{p_1}{\rho_1 T_1} = \frac{p_2}{\rho_2 T_2}$$

$$\Rightarrow \frac{\rho_2}{\rho_1} = \frac{p_2 T_1}{p_1 T_2}$$

 $\Rightarrow \frac{\rho_2}{\rho_1} = \frac{p_2 T_1}{p_1 T_2}$ এই মান (1) নং সমীকরণে বসিয়ে পাই,

$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{p}_1}{\mathbf{p}_2} \times \frac{\mathbf{p}_2 \mathbf{T}_1}{\mathbf{p}_1 \mathbf{T}_2}}$$

 $\therefore \frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{T}_1}{\mathbf{T}_2}}$ $\Rightarrow \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v}$ অর্থাৎ গ্যাসে শব্দের দ্রুতি কেলভিন তাপমাত্রার বা পরম তাপমাত্রার বর্গমূলের সমানুপাতিক।

আবার, 0° C তাপমাত্রায় বা, T_{o} K তাপমাত্রায় বাতাসে শব্দের দ্রুতি v_{0} এবং θ° C বা, TK তাপমাত্রায় বাতাসে শব্দের দ্রুতি v_{θ} হলে

$$\frac{V_0}{V_0} = \sqrt{\frac{T}{T_0}}$$
 কিছ T=(θ +273) এবং T_0 =273K

$$\frac{v_0}{v_0} = \sqrt{\frac{\theta + 273}{273}} = \left(1 + \frac{\theta}{273}\right)^{\frac{\pi}{2}}$$
 দ্বিপদী উপপাদ্যের সাহায্যে বিস্তার করে এবং উচ্চতর ঘাত বিশিষ্ট পদ সমূহ উপেক্ষা করে পাই, $v_\theta = v_0 \left(1 + \frac{1}{2} \cdot \frac{\theta}{273} + \dots\right)$ $\Rightarrow v_\theta = v_0 \left(1 + \frac{\theta}{546}\right)$ $\Rightarrow v_\theta = v_0 (1 + 0.00183 \, \theta)$

$$v_{\theta} = v_0 \left(1 + \frac{1}{2} \cdot \frac{\theta}{273} + \dots \right)$$

$$\Rightarrow v_{\theta} = v_{0} \left(1 + \frac{\theta}{546} \right)$$

$$\Rightarrow$$
 $\mathbf{v}_0 = \mathbf{v}_0 (1 + 0.00183 \,\theta)$

 $∴ v_0 = 332 ms^{-1} + (0.61 ms^{-1}) \theta$ সুতরাং দেখা যাচেছে যে, বায়ুতে প্রতি ডিগ্রি সেলসিয়াস তাপমাত্রা বৃদ্ধির জন্য শব্দের দ্রুতি 0.61ms-1 বা 61 cm s-1 বৃদ্ধি পায়।

শব্দের দ্রুতির উপর আদ্রতার প্রভাব (Effect of Humidity on speed of Sound):

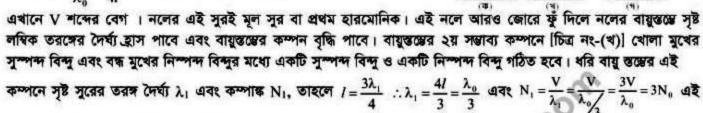
অদ্র বায়ু অর্থাৎ বায়ুতে জলীয়বাষ্প থাকলে এর ঘনতেুরও পরিবর্তন হয়; সূতরাং শব্দের দ্রতিরও পরিবর্তন হয়। অদ্র বায়ু বা জলীয় বাষ্পপূর্ণ বায়ুর ঘনতু শুষ্ক বায়ুর ঘনতুের তুলনায় কম অর্থাৎ বায়ুতে জলীয় বাষ্প যত বেড়ে যায় এর ঘনতু তত কমে যায়। আবার শব্দের দ্রুতি ঘনত্বের বর্গমূলের ব্যস্তানুপাতিক। সুতরাং বায়ুতে জলীয় বাস্প বেশি থাকলে শব্দের দ্রুতি বেড়ে যায়।

মনেকরি, নির্দিষ্ট চাপ p ও তাপমাত্রা 0-তে তক্ক ও আদ্র বাযুর ঘনত্ব যথাক্রমে ho_d ও ho_m এবং তক্ক ও আদ্র বাযুতে শব্দের

দ্রুভি যথাক্রমে
$$v_d$$
 ও v_m । সূতরাং $v_d=\sqrt{\frac{\gamma p}{\rho_d}}$ এবং $v_m=\sqrt{\frac{\gamma p}{\rho_m}}$
$$\because \frac{v_m}{v_d}=\sqrt{\frac{\gamma p}{\rho_m}}\times\frac{\rho_d}{\gamma p}=\sqrt{\frac{\rho_d}{\rho_m}}$$
 বা, $v_m=v_d\sqrt{\frac{\rho_d}{\rho_m}}$
$$od. \ om$$
 এর চেয়ে বড় হওয়ায় স

ρd, ρm এর চেয়ে বড় হওয়ায় νm, νd এর চেয়ে বড়।

সুতরাং অদ্র বায়ুতে শব্দের দ্রুতি শুরু বায়ুতে শব্দের দ্রুতির চেয়ে বেশী।


এক মুখ বন্ধ নলের খোলা মুখে আলোড়ন সৃষ্টি করলে এর মধ্যন্থ বায়ুক্তজ্ঞের কম্পনের প্রকৃতি (Vibration of Air Column in a Closed Pipe):

এক মুখ বন্ধ নলের খোলা মুখে ফুঁ দিলে বা আলোড়ন সৃষ্টি করলে নলের ভিতরের বায়ুস্তম্ভের মধ্যদিয়ে শব্দ লম্বিক তরঙ্গাকারে বন্ধ মুখের দিকে সঞ্চালিত হবে এবং বন্ধ মুখ থেকে প্রতিফলিত হয়ে খোলা মুখের দিকে অগ্রসর হবে। ফুঁ এর মূল স্পন্দন ও বায়ুস্তম্ভের কম্পনের মধ্যে অনুনাদ হলে বায়ুক্তম্ভ অধিক বিস্তারে কাঁপতে থাকে এবং সুর জোরালো হবে। এই অবস্থায় নলের খোলা মুখে সর্বদা একটি সুস্পব্দ বিন্দু (A) এবং বন্ধ মুখে একটি নিস্পন্দ বিন্দু (N) চিত্রানুযায়ী সৃষ্টি হবে। বায়ুস্তম্ভের কম্পন অনুসারে নলের ভিতর একাধিক সুস্পন্দ ও নিস্পন্দ বিন্দুর সৃষ্টি হতে পারে। বায়ুস্তম্ভের সহজত্বর কম্পনে [চিত্র নং-(ক)] তথুমাত্র বন্ধ মুখে একটি নিস্পন্দ

বিন্দুও খোলা মুখে একটি সুস্পন্দ বিন্দু গঠিত হবে। কিন্তু পরস্পর সংলগ্ন একটি নিস্পন্দ বিন্দু ও একটি সুস্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব তরঙ্গ দৈর্ঘ্যের ¼ অংশের সমান। সুতরাং নলের দৈর্ঘ্য / এবং কম্পনে সৃষ্ট

শব্দের তরঙ্গ দৈর্ঘ্য
$$\lambda_0$$
 ও কম্পান্ক N_0 হলে $I=\frac{\lambda_0}{4}$ $\therefore \lambda_0=4$ I (1)

এবং
$$N_0 = \frac{V}{\lambda_0} = \frac{V}{4l}$$
....(2) [:: $V = f\lambda$]

নলের সম্ভাব্য কম্পনে [চিত্র নং-(গ)] খোলা মুখের সুস্পন্দ বিন্দু এবং বন্ধ মুখের নিস্পন্দ বিন্দুর মধ্যে দুটি সুস্পন্দ বিন্দু ও দুটি নিস্পন্দ বিন্দু গঠিত হবে। কাজেই এই কম্পনে সৃষ্ট সুরের তরঙ্গ দৈর্ঘ্য λ_2 এবং কম্পান্ধ N_2 , হলে $I=\frac{5\lambda_2}{4}$ $\therefore \lambda_2=\frac{4I}{5}=\frac{\lambda_0}{5}$

এবং
$$N_2=\frac{V}{\lambda_2}=\frac{V}{\lambda_0/5}=\frac{5V}{\lambda_0}=5N_0$$
 এই সুরকে দিতীয় উপসুর বা পঞ্চম হারমোনিক বলে।

উপরোক্ত সমীকরন থেকে দেখা যায় যে, একমুখ বন্ধ নলে যে সমস্ত সূর সৃষ্টি হয় তাদের তরঙ্গ দৈর্ঘ্য $\lambda_0 = \frac{4l}{(2n+1)}$ এবং কম্পান্ধ

$$N_n = \frac{V}{\lambda_n} = \frac{V(2n+1)}{4l} = (2n+1)N_0$$
 এখানে $n = 0, 1, 3, \dots$ ইত্যাদি যে কোন পূর্ন সংখ্যা। এক মুখ বন্ধ নলে ভধুমাত্র

বেজোড় হারমোনিক গুলি উৎপন্ন হতে পারে অর্থাৎ ২য়, ৪র্থ, ৬ষ্ঠ ইত্যাদি হারমোনিক গুলি অনুপস্থিত থাকে।

দুই মুখ খোলা নলের একটি খোলা মুখে আলোড়ন সৃষ্টি করলে এর মধ্যন্থ বাযুক্তজ্ঞের কম্পনের প্রকৃতি (Vibration of Air

Column in a Open Pipe):

উভয় মুখ খোলা নলের এক প্রান্তে ফুঁ দিলে বা আলোড়ন সৃষ্টি করলে নলের ভিতরের বায়ুস্তম্ভের মধ্যদিয়ে শব্দ লখিক তরঙ্গাকারে অন্য প্রান্তে সঞ্চালিত হয়। অন্য প্রান্তে উপস্থিত হলে এই তরঙ্গ হঠাৎ প্রসারিত হওয়ার সুযোগ পায়। এই কারণে নলের খোলা মুখে সর্বদা সুস্পব্দ বিন্দু (A) এবং কম্পন ভেদে নলের মাঝখানে এক বা একাধিক নিস্পব্দ বিন্দু (N) চিত্রানুযায়ী সৃষ্টি হবে।

বায়ুস্তম্ভের সহজত্বর কম্পনে [চিত্র নং-(ক)] দুই মুক্ত প্রান্তে সুস্পন্দ বিন্দু এবং দুই 🔉 সুস্পন্দ বিন্দুর মাঝে একটি নিস্পন্দ বিন্দু থাকবে। এক্ষেত্রে তরঙ্গ দৈর্ঘ্য ১৯ এবং

নলের দৈর্ঘ্য
$$l$$
 ও হলে কম্পান্ক N_0 হলে $l=\frac{\lambda_0}{2}$ \therefore $\lambda_0=2$ l (1)

এবং
$$N_0 = \frac{V}{\lambda_0} = \frac{V}{2I}$$
....(2) $[\because V = f\lambda]$

এখানে V শব্দের বেগ । নলের এই সুরই মূল সুর বা প্রথম হারমোনিক।

এই নলে আরও জোরে ফুঁ দিলে নলের বায়ুস্তম্ভে সৃষ্ট লম্বিক তরঙ্গের তরঙ্গদৈর্ঘ্য ক্রাস পাবে এবং বায়ুস্তম্ভের কম্পন বৃদ্ধি পাবে। বায়ুস্তম্ভের ২য় সম্ভাব্য কম্পনে

[চিত্র নং-(খ)] মোট তিনটি সুস্পন্দ বিন্দু এবং মাঝ খানে দুটি নিস্পন্দ বিন্দু গঠিত হবে। ধরি বায়ু স্তম্ভের এই কম্পনে সৃষ্ট সুরের

তরঙ্গ দৈর্ঘ্য
$$\lambda_1$$
 এবং কম্পান্ক N_1 , তাহলে $I=\lambda_1$ $\therefore \lambda_1=\frac{2I}{2}=\frac{\lambda_0}{2}$ এবং $N_1=\frac{V}{\lambda_1}=\frac{V}{\lambda_0}=\frac{2V}{\lambda_0}=2N_0$ এই-সুরকে প্রথম উপসুর

বা দ্বিতীয় হারমোনিক বলে।

http://ebd24.com

N

তৃতীয় সম্ভাব্য কম্পনে [চিত্র নং-(গ)] মেমাট চারটি সুম্পন্দ বিন্দু এবং মাঝ খানে তিনটি নিম্পন্দ বিন্দু গঠিত হবে। কাজেই এই কম্পনে সৃষ্ট সুরের তরঙ্গ দৈর্ঘ্য λ_2 এবং কম্পান্ধ N_2 , হলে $I=\frac{3\lambda_2}{2}$ $\therefore \lambda_2=\frac{2I}{3}=\frac{\lambda_0}{3}$ এবং $N_2=\frac{V}{\lambda_2}=\frac{V}{\lambda_0}=\frac{3V}{\lambda_0}=3N_0$ এই

সুরকে দ্বিতীয় উপসুর বা তৃতীয় হারমোনিক বলে।

উপরোক্ত সমীকরন থেকে দেখা যায় যে, দুই মুখ খোলা নলে যে সমস্ত সুর সৃষ্টি হয় তাদের তরঙ্গ দৈর্ঘ্য $\lambda_n = \frac{2l}{n+1} = \frac{\lambda_o}{n+1}$ এবং

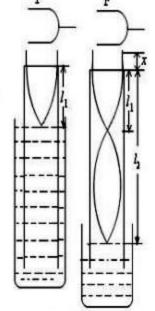
কম্পাঙ্ক $N_n = \frac{V}{\lambda_n} = \frac{V(n+1)}{2I} = (n+1)N_0$ হবে। এখানে $n=0,1,3,\ldots$ ইত্যাদি যে কোন পূর্ন সংখ্যা। দুই মুখ খোলা নলে

বেজোড় ও জোড় সকল প্রকার হারমোনিক উৎপন্ন হতে পারে।

অনুনাদী বায়ুক্তভ কি? অনুনাদ বায়ুক্তভ পদ্ধতিতে শব্দের বেগ নির্ণয় কর:

<u>অনুনাদ বায়ুক্ত (Resonance Air Column)</u>: কোন একটি একমুখ খোলা নলের মধ্যে আবদ্ধ বায়ুক্তম্ভের একটি স্বভাবিক কম্পান্ধ থাকে। এই কম্পান্ধ বায়ুক্তম্ভের দৈর্ঘ্যের উপর নির্ভর করে। এরূপ একটি খোলা নলের মুখে একটি কম্পান টিউনিং ফর্ক ধরলে ফর্কের কম্পান বায়ুক্তম্ভে পরবশ কম্পন সৃষ্টি করে। ফর্কের কম্পান্ধ যদি বায়ুক্তম্ভের কম্পান্ধের সমান হয় তবে বায়ুক্তম্ভ প্রবলভাবে কাঁপতে থাকে। একে অনুনাদী বায়ুক্তম্ভ বলে।

অনুনাদ বায়ুক্ত পদ্ধতিতে শব্দের বেগ নির্ণয় (Determination of Speed of Sound by Resonance Air Column Method):


মন্ত্রের বর্মনাঃ অনুনাদ বায়ুক্তম্ভ পদ্ধতিতে আগাগোড়া সমান প্রস্থচ্ছেদের একটি কাচনল থাকে। এই নলটিকে একটি পানির পাত্রে ডুবিয়ে

দুইতৃতীয়াংশ পানিতে ভর্তি করা হয়।
কার্যপদ্ধতি (Procedure): নির্দিষ্ট কম্পাঙ্কের একটি সুরশলাকা F নেওয়া হয়। একে রাবার
প্যাঙে আঘাত করে অনুনাদী নলের উন্মুক্ত প্রাক্তে ধরা হয়। এতে নলের মধ্যস্থ বায়ুতে পরবশ
কম্পানের সৃষ্টি হয়। এ কম্পান নিচের দিকে সঞ্চালিত হয় এবং পানির উপরিতল হতে পুণরায়
প্রতিফলিত হয়ে ফিরে আসে। নলটিকে উঠানামা করে নলের বায়ুক্তম্ভের দৈর্ঘ্যকে এমন ভাবে
উপযোজন করা হয় যাতে বায়ুক্তম্ভের সবচেয়ে কম দৈর্ঘ্যে অনুনাদ সৃষ্টি হয়। এই অবস্থায় পানির
উপরি তল হতে নলের উন্মুক্ত প্রান্ত পর্যন্ত অনুনাদী দৈর্ঘ্য নির্দিষ্য করা হয়।

হিসাব ও গানির উপরি ছলে একটি নিম্পান্ত বিহলা উপরি হবে। এই অবস্থাম ব্যক্তমের

হিসাব ও গণনা (Calculation): বায়ুস্তম্ভের এই অনুনাদ নলের খোলা মুখে একটি সুস্পদ বিন্দু ও পানির উপরি তলে একটি নিস্পদ বিন্দুর উৎপত্তি হবে। এই অবস্থায় বায়ুস্তম্ভের কম্পাঙ্ক সুরশলাকার কম্পাঙ্কের সমান হবে। মনেকরি, অনুনাদী বায়ুস্তম্ভের দৈর্ঘ্য \mathbf{I}_1 । যদি বায়ুতে শব্দের বেগ \mathbf{v} এবং বায়ুস্তম্ভের কম্পাঙ্ক \mathbf{n} হয় তবে, $I_1=\frac{\lambda}{4}$ $\therefore \lambda=4I_1$ কারণ নলের বন্ধ মুখে নিস্পন্দ বিন্দু এবং খোলা মুখে সুস্পন্দ বিন্দু উৎপন্ন হয় এবং এদের মধ্যবর্তী দূরত্ব $I_1=\frac{\lambda}{4}$ $\mathbf{v}=\mathbf{n}\lambda$ সমীকরণ হতে পাই, $\mathbf{v}=\mathbf{n}4I_1$ অর্থাৎ $\mathbf{v}=4\mathbf{n}I_1$ পরীক্ষন

হতে n ও l এর মান জেনে v বের করা হয়।

প্রাস্ত সংশোধন করে শব্দের বেগ নির্ণয় (Determination of Sound of Velocity with end Correction):

অনুনাদ পদ্ধতিতে বাতাসে শব্দের বেগ নির্পয়ের সময় ধরে নেওয়া হয় যে, সুস্পন্দ বিন্দু নলের উনুক্ত প্রান্তে সৃষ্টি হয়। কিন্তু বিজ্ঞানী র্যালে প্রমান করেন যে, সুস্পন্দ বিন্দু নলের খোলা মুখে না হয়ে কিছুটা উপরে হয়। তাই এর জন্যে একটি সংশোধন প্রয়োজন। এর নাম প্রান্ত সংশোধন। কাজেই একটি অনুনাদী বায়ু ভঞ্জের বাইরের মুক্ত প্রান্ত হতে ন্যুনতম যে দূরত্বে সুস্পন্দ বিন্দু অবস্থান করে তাকে প্রান্ত সংশোধন বলে।

ধরি প্রান্ত সংশোধন = x

∴ অনুনাদী বায়ুস্তজ্ঞের দৈর্ঘ্য = (l₁+x)

নলের অন্তঃ ব্যাস d হলে x=0.3d এবং নলের অন্তঃ ব্যাসার্ধ r হলে x=0.6r। কাজেই শব্দের বেগ $v=n\lambda$ হতে পাই,

sics

Md. Shah Jamal Asst. Professor of Physics

http://ebd24.com

$$v=4n(I_1+x)$$

বা, $v=4n(I_1+0.6r)$ বা, $v=4n(I_1+0.3d)$ ইহাই প্রান্ত সংশোধনের পর শব্দের বেগ।

প্রান্ত সংশোধন পরিহার করে শব্দের বেগ নির্ণয়:

প্রান্ত সংশোধন পরিহার করেও শব্দের বেগ নির্ণয় করা যায়। প্রথম অনুনাদ সৃষ্টি করার পর অনুনাদী নলে বায়ুস্তম্ভের দৈর্ঘ্য যদি ক্রমে আরও বৃদ্ধি করতে থাকি তাহলে প্রথম অনুনাদের প্রায় তিন গুন দৈর্ঘ্যে দ্বিতীয় অনুনাদ সৃষ্টি হবে। ধরা যাক, দ্বিতীয় অনুনাদের সময় বাযুম্ভম্ভের দৈর্ঘ্য $= I_2$

তাহলে,
$$l_1 + x = \frac{\lambda}{4}$$
... ... (1) এবং $l_2 + x = \frac{3\lambda}{4}$ (2) (2) থেকে (1) বিয়োগ করে পাই, $l_2 - l_1 = \frac{\lambda}{2}$... $\lambda = 2(l_2 - l_1)$ এখন, $v = n\lambda$

 $\therefore v = n \times 2(l_2 - l_1)$ অর্থাৎ $\therefore v = 2n(l_2 - l_1)$ এখন l_1, l_2 এবং n এর মান বসিয়ে শব্দের বেগ নির্ণয় করা যায়।

ডপৰার প্রভাব (Doppler Effect):

শ্রোতা ও উৎসের আপেক্ষিক গতির ফলে শ্রুত শব্দের কম্পাঙ্কের তথা তীক্ষ্ণতার আপাত পরিবর্তনকে ডপলার প্রভাব বলে। একটি অ্যামুলেন্স যখন সাইরেন বাজিয়ে আসতে থাকে তখন সাইরেনের তীক্ষণ্ডা বৃদ্ধি পেতে থাকে আবার যখন সেটি চলে যেতে থাকে তখন তীক্ষ্ণতা ক্রমশঃ কমতে থাকে। যদি শ্রোতা ও উৎস পরস্পরের দিকে অগ্রসার হয় তখন শ্রুত শব্দের কম্পাঙ্কের আপাত বৃদ্ধি হয় এবং শ্রোতা ও উৎস পরস্পর থেকে দূরে সরে গেলে শ্রুত শব্দের কম্পাঙ্কের আপাত হ্রাস পায়।

ছির শ্রোভার দিকে গতিশীল উৎস (Source Moving Towards Stationary Observer):

মনেকরি, একজন শ্রোতা O অবস্থানে স্থির আছে এবং S শব্দ উৎসের আদি অবস্থান। উৎসটি f কম্পাঙ্কের শব্দ উৎপন্ন করতে করতে us বেগে স্থির শ্রোতা O এর দিকে এগুচ্ছে এবং v শব্দ তরঙ্গের বেগ। এখন উৎসের কম্পাঙ্ক f বলে প্রতি সেকেন্ডে f সংখ্যক তরঙ্গ নির্গত হয় এবং তরঙ্গ বেগ v বলে প্রতি সেকেন্ডে তরঙ্গ v দূরত্ব অতিক্রম করে। সুতরাং

এই f সংখ্যক তরঙ্গ √দৈর্ঘ্যের মধ্যে অবস্থান করে। (চিত্র পার্শ্বে) কাজেই উৎস যখন স্থির

থাকে তখন শব্দের মূল তরঙ্গ দৈর্ঘ্য $\lambda = rac{v}{f}$ । কিন্তু উৎসটি যদি সেকেন্ডে f সংখ্যক তরঙ্গ নির্গত করতে করতে us বেগে ছির শ্রোতা O এর দিকে অগ্রসর হয়ে এক সেকেন্ডে S' অবস্থানে আসে তাহলে সেই সংখ্যক তরঙ্গ এখন (v – us)) দৈর্ঘ্যের মধ্যে ঠাসা ঠাসি করে অবস্থান করবে। ফলে তরঙ্গ দৈর্ঘ্যহ্রাস পাবে। এখন এর তরঙ্গ দৈর্ঘ্য হবে

$$\lambda' = \frac{v-u_s}{f}$$
। স্থির শ্রোতার কাছে শব্দের তরঙ্গ দৈর্ঘ্য $\lambda = \frac{v}{f}$ কমে $\lambda' = \frac{v-u_s}{f}$

-u-+WVM ------|0 মানের বলে মনে হবে। সূতরাং শ্রোতার দিকে উৎসের গতিশীলতার জন্য স্থির শ্রোতার কাছে শ্রুত শব্দের আপাত কম্পাঙ্ক f'হলে।

আপাত কম্পান্ধ $f'=\dfrac{$ শব্দ তরকের বেগ $}{ \gamma {
m fa}$ বিতিত তরঙ্গ দৈঘ ঠ $}=\dfrac{v}{\lambda'}$ $\Rightarrow f'=\dfrac{v}{(v-u_s)/f}$

$$\Rightarrow f' = \frac{v}{(v - u_s)/f}$$

$$\therefore f' = \frac{v}{(v - u_s)}$$
 f এই সমীকরণ থেকে দেখা যায় যে, যেহেতু $(v - u_s) < v$ $\therefore f' > f$

সুতরাং উৎস যখন কোন স্থির শ্রোতার দিকে গতিশীল থাকে তখন শ্রোতার কাছে শব্দ তরঙ্গের কম্পাঙ্ক বৃদ্ধি পেয়েছে বলে মনে হবে। এবং শ্রুত শব্দের তীক্ষ্ণতারও আপাত বৃদ্ধি হবে।

উৎসটি যদি স্থির শ্রোতা হতে দৃরে সরে যায় তাহলে us-কে ঋনাত্মক ধরতে হয়। অর্থাৎ সেক্ষেত্রে,

$$f' = \frac{v}{v - (-u_s)} f$$
 $\therefore f' = \frac{v}{v + u_s} f$ এক্ষেত্রে $f' < f$ সুতরাং উৎস শ্রোতা থেকে দূরে সরে গেলে শ্রুত

শব্দের কম্পাঙ্ক তথা তীক্ষতা আপাত হ্রাস পাবে।

উৎস ছির কিন্ত শ্রোতা উৎসের দিকে গতিশীল (Source Stationary But Observer Moving Towards It):

ধরা যাক, শব্দ উৎস s অবস্থানে স্থির আছে এবং শ্রোতা O

অবস্থান হতে উৎসের দিকে uo দ্রুতিতে অগ্রসর হচ্ছে। উৎস কতৃক নিসৃত শব্দের কম্পাঙ্ক f, তরঙ্গ দৈর্ঘ্য λ এবং দ্রুতি v। এক সেকেন্ডে f সংখ্যক তরঙ্গ উৎপন্ন করছে শ্রোতা স্থির থাকলে প্রতি সেকেন্ডে তার কানে f সংখ্যক তরঙ্গই পৌছাত। অর্থাৎ 1 সেকেন্ডে f তরঙ্গ ৮ দূরত জুড়ে থাকত। সূতরাং শ্রোতা O এর কাছে যে তরঙ্গমালা পৌছাবে

তার দৈর্ঘ অপরিবর্তিত থাকবে এবং তা হবে $\lambda=rac{v}{c}$ । এখন যেহেতু শ্রোতা উৎসের দিকে u_o দ্রুতিতে গতিশীল কাজেই শ্রোতার

সাপেকে শব্দের দ্রুন্তি
$$(v+u_o)$$
 হবে। সুতরাং আপাত কম্পাঙ্ক, $f'=rac{$ ্রোতার সাপেকে শব্দের দ্রুন্তি $}{O}$ বিন্দুতে পৌছান তরঙ্গের তরঙ্গ দৈঘ $^{\prime}$ $}=rac{v+u_o}{v/f}$

উপরোক্ত সমীকরণ থেকে দেখা যায় যে যেহেতু $(v+u_o)>v : f'>f$ সূতরাং আপাত কম্পাঙ্ক প্রকৃত কম্পাঙ্কের চেয়ে বেশী হবে। অর্থাৎ যখন কোন শ্রোতা স্থির উৎসের দিকে গতিশীল থাকে

তখন শ্রুত শব্দের কম্পাঙ্ক তথা তীক্ষতার আপাত বৃদ্ধি হয়। যদি শ্রোতা স্থির উৎস থেকে দূরে সরে যায় তাহলে uo কে ঋনাত্মক ধরতে হবে। অর্থাৎ সেক্ষেত্রে

$$f' = \left(\frac{v + u_o}{v - u_o}\right) f \dots \dots \dots \dots (2)$$

এ ক্ষেত্রে যেহেতু f' < f সূতরাং শ্রোতা স্থির উৎস থেকে দূরে সরে গেলে শ্রুত শব্দের কম্পাঙ্কের তথা তীক্ষতার আপাত হ্রাস

হবে। http://ebd24.com Md. Shah Jamal Asst. Professor of Physics