Math problems solution of Linear Motion

 A bullet after penetrating 0.04m of a wall loses half of its speed. Haw much will it be penetrated before coming to rest.

Let.

Initial velocity of bullet = u

And final velocity of bullet =
$$\frac{u}{2}$$

At the 1st case: We Know,

$$\left(\frac{u}{2}\right)^2 = u^2 - 2a(0.04)$$

$$\Rightarrow 0.08a = u^2 - \frac{u^2}{4}$$

$$\therefore a = \frac{3u^2}{4 \times 0.08} = \frac{3u^2}{0.32} \dots (1)$$

At the 2^{nd} case: Initial velocity of bullet = $\frac{u}{2}$

And final velocity of bullet = 0 and distance x=? We Know,

$$0^{2} = \left(\frac{u}{2}\right)^{2} - 2\alpha x$$

$$\Rightarrow 0 = \left(\frac{u}{2}\right)^{2} - 2 \times \frac{3u^{2}}{0.32} \times x$$

$$\Rightarrow \frac{6u^{2}x}{0.32} = \frac{u^{2}}{4}$$

$$\therefore x = \frac{0.32}{6 \times 4} = 0.0133 \text{ m (Ans.)}$$

- 2. A body of thrown from 50m height?
- (a) Haw long it take to touch the ground?
- (b) Find the velocity just at the time of touching the ground.

We know.

(b) v = u + gt $\Rightarrow v = 0 + 9.8 \times 3.19$ $\therefore v = 31.26 \text{ ms}^{-1} \text{ (Ans.)}$

(a)
$$h = ut + \frac{1}{2}gt^2$$

$$\Rightarrow 50 = 0 + \frac{1}{2}9.8 \times t^2$$

$$\Rightarrow 50 = 4.9t^2$$

$$\Rightarrow t^2 = \frac{50}{4.9}$$

$$\Rightarrow t = \sqrt{\frac{50}{4.9}}$$

$$\therefore t = 3.19 \text{ s (Ans.)}$$
Again,

 A body moving at the speed of 20ms⁻¹ losses its speed by 3ms⁻¹. How far does it travel before it stop.
 We Know, v² = u² - 2as

Or,
$$0 = 20^2 - 2(3)s$$

Or, $6s = 400$
or, $s = \frac{400}{6}$
 $\therefore s = 66.7 \text{ m}$ (Ans.)

Here, Initial velocity, $u = 20 \text{ ms}^{-1}$
Retardation, $a = 3 \text{ ms}^{-2}$
Final velocity, $v = 0$
Distance travelled, $s = ?$

4. A ball is thrown vertically upward and it touches a telephone wire with velocity with 0.70ms⁻¹ at hight 5.1m. Find the initial speed of the ball.

We Know, $v^2 = u^2 - 2gh$ $\Rightarrow (0.7)^2 = u^2 - 2 \times 9.8 \times 5.1$ $\Rightarrow u^2 = (0.7)^2 + 2 \times 9.8 \times 5.1$ $\Rightarrow u^2 = 0.49 + 99.96$ $\Rightarrow u^2 = 100.45$ $\therefore u = \sqrt{10045} = 10.02 \text{ ms}^{-1} \text{ (Ans.)}$

5. A train is moving with 3ms-2 and with initial speed 10 10 ms-1. When it travels 60m, find its speed.

We Know,

$$v^2 = u^2 + 2as$$

 $\Rightarrow v^2 = 10^2 + 2 \times 3 \times 60$
 $\Rightarrow v^2 = 100 + 360$
 $\Rightarrow v^2 = 460$
 $\therefore v = \sqrt{460} = 21.447 = 21.45 \text{ms}^{-1}$ (Ans)

6. If an object is thown vertically upward at speed 98 ms⁻¹. Show that at 3 Sec and 17 Sec, velocities of the object will be same but opposite in direction.

We Know. Velocity after 3Sec Initial velocity, $v_1 = u - gt_1$ $u = 98 \text{ ms}^{-1}$ or, $v_1 = 98 - 9.8 \times 3$ Time, $t_1 = 3S$ or, $v_1 = 98-29.4$ Time, $t_2 = 17S$ $v_1 = 68.6 \text{ms}^{-1}$ Final velocity, v₁ =? Again, Velocity after 17Sec Final velocity, $v_2 = ?$ $v_2 = u - gt_2$ or, $v_2 = 98 - 9.8 \times 17$ or, $v_2 = 98 - 166.6$ $v_2 = -68.6 \text{ ms}^{-1}$.. At 3 Sec and 17 Sec, velocities of the object will be same but opposite in direction.

(Showed)

2

7. A body is moving in a straight line following the equation, $s = \frac{1}{3}t^3 + 3t$. Calculate the velocity

after 2 sec.

$$v = \frac{ds}{dt}$$

$$\Rightarrow v = \frac{d}{dt} \left(\frac{1}{3} t^3 + 3t \right)$$

$$\Rightarrow \mathbf{v} = \frac{\mathbf{d}}{\mathbf{dt}} \left(\frac{1}{3} \mathbf{t}^3 + 3\mathbf{t} \right)$$
 Time, $t = 2$ Sec Velocity, $v = ?$

$$\Rightarrow v = \frac{1}{3} \times 3t^2 + 3$$
$$\Rightarrow v = t^2 + 3$$

$$\Rightarrow v = t^2 + 3$$

$$\Rightarrow v = 2^2 + 3 \quad [t=2sec.]$$

$$\therefore v = 7 \text{ Unit(Ans.)}$$

8. A ball is thrown vertically upward from the ground with a velocity 40ms-1 and at the same time another ball is realised from a heihgt 40cm. When and where the balls will meet each

other? [g=10m ms-2]

Let, after t sec and at a height x from the earth's surface the balls meet each other. During that time the 2nd Ball falls (40-x)m

For the first ball, we get,

$$h = v_0 t - \frac{1}{2}gt^2$$

$$\Rightarrow x = 40t - \frac{1}{2} \times 10 \times t^2$$

$$\therefore x = 40t - 5t^2 \dots \dots (1)$$
For the second ball,

$$h = v_0 t + \frac{1}{2}gt^2$$

$$\Rightarrow 40 - x = 0 + \frac{1}{2} \times 10 \times t^2$$

$$\Rightarrow 40 - x = 5t^2$$

$$\therefore x = 40-5t^2 \dots (2)$$

We get, $40t-5t^2 = 40-5t^2$

 \Rightarrow 40t = 40 : t = 1 Sec From equation (2)

We get,
$$x = 40-5t^2$$

$$\Rightarrow x = 40 - 5 \times 1^2$$

Ans. Height from the ground =35m. and time 1 Sec

9. A body travelled 2 km in 1st second from rest. If the acceleration is uniform. Find the time required to travel the next 1m.

$$s_1 = ut_1 + \frac{1}{2}at_1^2$$

 $\Rightarrow 1 = 0 + \frac{1}{2}a(1)^2$

$$\Rightarrow 1 = 0 + \frac{1}{2}a(1)^{2}$$

$$\Rightarrow 1 = \frac{a}{2}$$
Initial velocity, u = 0
Time, t₁ = 1s
Displacement, s₁ = 1m
Acceleration, a =?

 $\therefore a = 2 \text{ms}^{-2}$

Now, distance from first, $s_2 = (1m+1m) = 2m$.

Then time required $= t_2$

$$s_2 = ut_2 + \frac{1}{2}at_2^2$$

$$\Rightarrow 2 = 0 + \frac{1}{2} \times 2 \times t_2^2$$

$$\Rightarrow t_2^2 = 2$$

$$\therefore t_2 = \sqrt{2} = 1.414s$$

The time required to travel the last 1m = t \therefore t = t₂ - t₁ = (1.414 - 1) s = 0.414s (Ans.)

10. A train starts from rest with uniform acceleration 10ms⁻². Prallel to the train a car starts at the same time with uniform velocity100ms⁻¹. When will the train overtake the car?

Here,

 $V = 100 \text{ms}^{-1}$

 $a = 10 \text{ms}^{-2}$

Time, t =?

Uniform velocity of car,

Acceleration of the train,

Let, after t sec the train will pass the distance x

$$x = 0 + \frac{1}{2}at^2$$

$$\Rightarrow x = \frac{1}{2} \times 10 \times t^2$$

$$\therefore x = 5t^2 \dots \dots (1)$$

After t sec car will pass the distance
$$x'$$

$$x' = Vt$$

 $x' = 100t \dots \dots (2)$

Now, form eqtn. (1) And (2) we gate, x = x' $5t^2 = 100t$

$$\Rightarrow t = \frac{100}{5} \quad \therefore t = 20s \text{ (Ans.)}$$

11. A body starting from rest travels 625m. When its velocity becomes 125ms-1, find the acceleration. We Know.

Here,

$$v^2 = u^2 + 2as$$

$$\Rightarrow 125^2 = 0 + 2 \times a \times 625$$

$$\Rightarrow a = \frac{125^2}{2 \times 625} ms^{-2}$$

$$\therefore a = 12.5 ms^{-2} (Ans.)$$

Distance, s = 625mFinal velocity, v = 125 ms-1 Acceleration, a = ?

Initial velocity, u = 0

12. How long will it take to reach the ground of a stone of mass 5 kg thrown from the top of a building of 64m height? Here.

We Know,

$$h = ut + \frac{1}{2}gt^2$$

Initial velocity, u = 0Distance, h = 64mMass, m= 5kg

Time, t =?

$$\Rightarrow$$
 64 = 0 + $\frac{1}{2}$ × 9.8 × t^2

$$\Rightarrow$$
 64 = 4.9 t^2

$$\Rightarrow t = \sqrt{\frac{64}{4.9}} \quad \therefore t = 3.61 \, s. \, (Ans.)$$